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Learning Against Distributional Uncertainty: On the
Trade-off Between Robustness and Specificity

Shixiong Wang, Haowei Wang, Xinke Li, and Jean Honorio

Abstract—Trustworthy machine learning aims at combating
distributional uncertainties in training data distributions com-
pared to population distributions. Typical treatment frameworks
include the Bayesian approach, (min-max) distributionally robust
optimization (DRO), and regularization. However, three issues
have to be raised: 1) the prior distribution in the Bayesian
method and the regularizer in the regularization method are
difficult to specify; 2) the DRO method tends to be overly
conservative; 3) all the three methods are biased estimators
of the true optimal cost. This paper studies a new framework
that unifies the three approaches and addresses the three
challenges above. The asymptotic properties (e.g., consistencies
and asymptotic normalities), non-asymptotic properties (e.g.,
generalization bounds and unbiasedness), and solution methods
of the proposed model are studied. The new model reveals the
trade-off between the robustness to the unseen data and the
specificity to the training data. Experiments on various real-world
tasks validate the superiority of the proposed learning framework.

Index Terms—Generalization Error, Distributional Robustness,
Bayesian Nonparametrics, Regularization.

I. INTRODUCTION

Supervised statistical machine learning can be modeled by
the following optimization problem [1], [2]:

min
x∈X

Eξ∼P0
h(x, ξ), (1)

in which x ∈ X ⊆ Rl is the decision vector and ξ ∈ Ξ ⊆ Rk

is the random parameter whose underlying distribution is P0;
the cost function is denoted by h : X × Ξ → R (particularly
R+). Specifically, hypotheses are parameterized by x and ξ :=
(ξin, ξout) denotes a data pair where ξin and ξout denote the
feature and expected response, respectively.

In the practice of machine learning, the true population
distribution P0 is unknown, and the empirical distribution
P̂n := 1

n

∑n
i=1 δξi , where δξi is the Dirac distribution con-

centrated at the point ξi, constructed by n independent and
identically distributed (i.i.d.) samples {ξi}i∈[n] is the most
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common estimate of P0. As a result, we can use the data-
driven nominal model [1]

min
x∈X

Eξ∼P̂n
h(x, ξ) (2)

as an approximation to true model (1) to find the optimal
decision. In the literature, (2) is known as an empirical risk
minimization (ERM) model or a sample-average approximation
(SAA) model. However, there exists a distributional mismatch
(i.e., distributional uncertainty) between P̂n and P0 due
to scarce data and the approximation error of (2) to (1)
vanishes only as n → ∞. Neglecting such distributional uncer-
tainty in P̂n may cause significant performance degradation:
EP0

h(x̂n, ξ) may be significantly larger than minx EP0
h(x, ξ)

due to overfitting, where x̂n solves (2). Mitigating the adverse
impact resulting from the distributional uncertainty in P̂n and
controlling the generalization error EP0h(x

⋆, ξ)−EP̂n
h(x⋆, ξ)

by selecting a promising decision x⋆, in Pn
0 -probability or in

Pn
0 -expectation, lie in the core of trustworthy machine learning,

where Pn
0 is the joint distribution of n i.i.d. training samples.

A. Literature Review

Bayesian methods [3], [4] are the first choice to deal with
the distributional mismatch in P̂n. Suppose C is a family of
admissible distributions on the measurable space (Ξ,BΞ) where
BΞ denotes the Borel σ-algebra on Ξ; in the literature, C is also
called an ambiguity set. For instance, in consideration of the
nominal problem (2), C can be defined as a closed distributional
ball with center P̂n and radius ϵn, that is, C := Bϵn(P̂n).
Bayesian approaches attempt to design a probability measure
Q on (C,BC), where BC denotes the Borel σ-algebra on C
[5], and the following Bayesian counterpart for the nominal
problem (2) is solved:

min
x∈X

EP∼QEξ∼Ph(x, ξ). (3)

In this case, the true population distribution P0 is expected to
be included in C and an ideal Q should be the one that lets the
distributions in C concentrate at P0. Namely, P0 is the element
most likely to be sampled from C according to Q. Under
some mild technical conditions, we can find a point P′ ∈ C
satisfying EQEPh(x, ξ) = EP′h(x, ξ) for all x (see Lemma 1).
Hence, essentially, Bayesian methods tell us how to locate the
“best” candidate in C. If P′ is closer to P0 than P̂n to P0, the
Bayesian method (3) would have a smaller approximation error
for (1) than the nominal method (2) would have; examples and
justifications can be accessed in, e.g., [6], [7]. Note that either
(resp. both) Q or (resp. and) P can be parametric distributions.
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Regularization approaches are another promising choice to
hedge against the distributional uncertainty in P̂n [8, Sec. A1.3].
To be specific, a regularization term f(x) is employed and the
regularized counterpart

min
x∈X

Eξ∼P̂n
h(x, ξ) + λf(x) (4)

for the nominal empirical risk minimization problem (2) is
studied, in which λ ≥ 0 is a balancing coefficient. For
example, the regularizer f(x) can be a proper norm ∥x∥
on X [9, Chap. 7], and λ may depend on the sample size
n. Regularization methods are believed to be able to work
against “overfitting” and reduce generalization errors in a great
number of learning problems; one may reminisce about the
“bias-variance trade-off” in the machine learning literature [10,
Sec. 2.9]. The rationale of the regularization methods can also
be quantitatively justified from many other perspectives such
as the measure concentration inequalities [11], the stability
properties of the learning algorithms [12, Sec. 5.2], and the
PAC-Bayesian learning [13, Sec. 2], to name a few. The key
point is that the regularized SAA cost EP̂n

h(x, ξ)+λf(x) can
be an upper bound of the unknown true cost EP0

h(x, ξ) for
all x, and therefore, by minimizing the regularized SAA cost,
the unknown true cost can also be controlled. However, the
SAA cost EP̂n

h(x, ξ) solely cannot serve as an upper bound
of the true cost.

The (min-max) distributionally robust optimization (DRO)
counterpart

min
x∈X

max
P∈C

Eξ∼Ph(x, ξ) (5)

for the nominal model (2) is another potential approach to
handle the distributional uncertainty in P̂n [14], [15], [16]. If
the distributional family C contains the true distribution P0,
then the inequality EP0h(x, ξ) ≤ maxP∈C EPh(x, ξ) holds
for all x, and therefore, by minimizing the robust cost
maxP∈C EPh(x, ξ), the unknown true cost can also be con-
trolled; for more interpretations and justifications of the DRO
method, see [1], [15]. According to, e.g., [17], [18], we can find
a point P′ in C such that maxP∈C EPh(x, ξ) = EP′h(x, ξ), for
all x, if some mild technical conditions on the function h can be
satisfied. Therefore, as an alternative to the Bayesian approach
(3), the DRO approach (5) chooses the “best” candidate P′

in C from another perspective. However, in the practice of
DRO methods, elegantly specifying the size parameter ϵn of
the employed ambiguity set C := Bϵn(P̂n) is not easy because
the radius can be neither too large nor too small. A small
radius cannot guarantee P0 to be included in C. Consequently,
the worst-case cost maxP∈C EPh(x, ξ) cannot provide an upper
bound for the unknown true cost. Conversely, if the radius is too
large, the DRO methods would become overly conservative and
the upper bound of the true cost specified by maxP∈C EPh(x, ξ)
may be extremely loose. In the DRO literature, typical design
methods for ϵn and their drawbacks are as follows.

1) The measure concentration bounds in, e.g., [19] and
[1], are just theoretical results, far away from practical
utilization, because the involved constants depend on
the true underlying distributions, which are unknown.
In addition, measure concentration bounds are not tight.

Third, measure concentration bounds are dependent on
the dimension of ξ, and therefore, they may face the curse
of dimensionality [20].

2) Practical methods such as cross-validation [18, p. 156]
and bootstrap [18, p. 158] are reliable if and only if the
data size n is sufficiently large. When n is small, they
may not work well [21], [22].

3) Statistical inference methods presented in [23], [24] also
require n to be large because the optimality of the
presented methods is established in the asymptotic sense
(i.e., when n → ∞).

According to, e.g., [1, Thm. 10], [2], under some technical
conditions, the DRO approach (5) amounts to a regularized
empirical risk minimization method (4), which also advocates
why the DRO approach (5) is able to combat overfitting and
provide excellent generalization performance.

B. Research Gaps and Motivations

It is practically uneasy to specify prior distribution Q in
Bayesian method (3), regularizer f(x) in regularization method
(4), and radius ϵn of distributional ball Bϵn(P̂n) in DRO
method (5). The three quantities cannot be arbitrarily specified,
otherwise, the performances of the three associated methods
cannot be guaranteed. For example, as explained before, ϵn
can be neither too large nor too small. Therefore, the first
motivation of this work is to design a new framework that
frees us from the elaborate selection of prior distribution Q,
regularizer f(x), and radius ϵn.

In addition, the DRO approach, SAA approach, and regular-
ized SAA approach are biased estimators of the true optimal
objective value (1) when n is finite; the biases only vanish
asymptotically (i.e., as n → ∞). Hence, the second motivation
of this work is to design a new model that is able to be unbiased
for finite n, which brings the asymptotic statistical property to
finite-sample learning.

C. Contributions

The contributions of this paper can be summarized as
follows.

1) A new framework that can combat the distributional
uncertainty in P̂n is designed; see Section III, and Models
(9) and (10). The framework generalizes Bayesian method
(3), regularization method (4), and DRO method (5) and
suggests the instructions in designing Q and f(x); see
Remark 1. In addition, the framework reveals the trade-off
between the robustness to the unseen data (i.e., the adverse
distributional uncertainty in P̂n) and the specificity to the
training data (i.e., the exploitable empirical information
in P̂n); see Remark 2. Moreover, the framework can
diminish the conservatism, and therefore improve the
performance, of the DRO method; see Theorem 2, Remark
4, and Examples 1 and 2. Statistical properties of the
new learning model such as consistencies, asymptotic
normalities, generalization bounds, and unbiasedness are
established; see Theorems 1, 2, and 3.

2) The proposed new model is specifically studied under
the ϕ-divergence and Wasserstein distributional balls, and
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respective solution methods are derived; see Section V.
In particular, the solutions disclose two important insights
from the perspective of data augmentation (see Examples
3 and 4), which intuitively explain the flexibility of the
proposed learning model.

II. NOTATIONS AND PRELIMINARIES

Notations used in this paper are summarized in Appendix
A-A. Necessary DRO theories are reviewed in Appendices
A-B and A-C. Statistical concepts including Glivenko–Cantelli
class, Donsker class, and Brownian bridge are presented in
Appendix A-D. In this section, we focus on a reformulation
of the Bayesian model (3). We start with the concept of mean
distribution.

Definition 1 (Mean Distribution). A distribution P̄ satisfying
P̄(E) =

∫
R P(E)Q(dP(E)), ∀E ∈ BΞ is a mean distribution

of P under Q. □

Namely, the mean distribution is a mixture of distributions
in C with weights determined by Q. To be specific, for an
event E in BΞ, P(E) is a random variable taking values on
R+ and its distribution is specified by Q. This definition can
transform Bayesian model (3).

Lemma 1 ([25]). If P̄ is the mean distribution of P under Q
and EQEP|h(x, ξ)| < ∞, then EQEPh(x, ξ) = EP̄h(x, ξ) for
every x. □

In terms of model (3), the most popular choice for a non-
parametric prior distribution Q of P, in Bayesian nonpara-
metrics, is the Dirichlet-process prior. Furthermore, when the
n-sample empirical distribution P̂n is considered, the posterior
non-parametric distribution of P is still a Dirichlet process
whose mean distribution is α

α+n P̂ + n
α+n P̂n, where P̂ is a

priori knowledge of P0 and α ≥ 0 is employed to quantify
the trust level towards P̂ [3], [4, Chap. 3]. Specifically, if we
trust the prior P̂ more than the empirical distribution P̂n, α
should be large. When the Dirichlet-process prior is utilized,
as a result of Lemma 1, the Bayesian model (3) becomes

min
x

α

α+ n
EP̂h(x, ξ) +

n

α+ n
EP̂n

h(x, ξ). (6)

It can be generalized into

min
x

βnEP̂h(x, ξ) + (1− βn)EP̂n
h(x, ξ) (7)

where the weight βn ∈ [0, 1] depends on sample size n; βn

can be an arbitrary sequence satisfying βn → 0 as n → ∞.
Model (7) serves as a foundation for the new machine learning
framework that we propose subsequently.

III. NEW FRAMEWORK: BAYESIAN DISTRIBUTIONALLY
ROBUST LEARNING

In real-world operation, it is often difficult to specify an exact
(non-parametric Bayesian) prior Q for a Bayesian model (3).
This motivates us to study the second-order min-max (or worst-
case) Bayesian distributionally robust optimization counterpart
for the nominal model (2)

min
x

max
Q

EP∼QEξ∼Ph(x, ξ), (8)

which is a robustified version of the Bayesian model. In
particular, model (8) is a combination of a Frequentist and a
Bayesian method: The random measure P follows the second-
order probability measure Q, and therefore, in terms of P, (8)
is a Bayesian method; the admissible values of Q are only
assumed to lie in an ambiguity set (which is not explicitly
specified here), and therefore, in terms of Q, (8) is a Frequentist
method.

Inspired by (8), we shall study the worst-case version of (7):

min
x∈X

βn max
P∈Bϵ(P̂)

EPh(x, ξ) + (1− βn)EP̂n
h(x, ξ). (9)

Note that the uncertainty in Q is reflected by the uncertainty
in the prior estimate P̂ because P̂n is completely determined
given samples {ξi}i∈[n].

Remark 1 (Interpretation of Model (9)). Model (9) is a
Bayesian non-parametric model in terms of the data distribution
P and also a Frequentist distributionally robust optimization
model in terms of the distribution Q of the data distribu-
tion; cf. (8). Since (9) is equivalent to minx∈X EP̂n

h(x, ξ) +
βn

1−βn
maxP∈Bϵ(P̂) EPh(x, ξ), by letting λn := βn

1−βn
and

f(x) := max
P∈Bϵ(P̂)

EPh(x, ξ),

(9) can be rewritten as minx∈X EP̂n
h(x, ξ)+λnf(x), which is

a regularized SAA model (4). Also, when βn := 1, (9) reduces
to a DRO model (5); when βn := 0, (9) reduces to a SAA
model (2). Hence, the new model (9) is a generalized model
that unifies the SAA model (2), the Bayesian model (3), the
regularized SAA model (4), and the DRO model (5). The benefit
is that (9) suggests how to design Q in the Bayesian method
(3) and f(x) in the regularization method (4). □

In practice, it is uneasy to specify P̂. Alternatively, if the
distributional ambiguity set is constructed around P̂n rather
than P̂, the model (9) becomes completely data-driven:

min
x∈X

βn max
P∈Bϵn (P̂n)

EPh(x, ξ) + (1− βn)EP̂n
h(x, ξ). (10)

This is a change-of-center trick for the employed distributional
ambiguity set: Non-rigorously speaking, we are assuming P̂
is contained in Bϵn,1

(P̂n) and P̂n is contained in Bϵn,2
(P̂)

for some radii ϵn,1, ϵn,2 ≥ 0. We call (10) a Bayesian
distributionally robust (BDR) optimization.

Remark 2 (Robustness-Specificity Trade-off). Since the ob-
jective of (10) balances the worst-case cost specified by DRO
and the nominal cost specified by SAA, the new model (10)
reveals the trade-off between the robustness to the distributional
uncertainty (i.e., unseen data) and the specificity to the
empirical information (i.e., training data). □

In the following, we use a linear regression example with
Gaussian data distribution to intuitively explain the BDR
learning framework. Consider the data generating distribution
ξ := [ξin; ξout] ∼ N(0,Σ0) and the linear regression model
ξout = x⊤ξin + e where e ∈ R denotes the regression residual.
The true optimization problem minx[x

⊤,−1]EP0
ξξ⊤[x;−1]

admits
min
x∈X

[x⊤,−1] ·Σ0 · [x;−1]. (True)
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Denoting Σ̂n as the sample-estimate of Σ0, the SAA counter-
part minx[x

⊤,−1]EP̂n
ξξ⊤[x;−1] is

min
x∈X

[x⊤,−1] · Σ̂n · [x;−1]. (SAA)

The DRO counterpart minx maxP[x
⊤,−1]EPξξ

⊤[x;−1] under
the order-2 Wasserstein ball W2(P, P̂n) ≤ ϵn is

minx maxΣ [x⊤,−1]Σ[x;−1]

s.t. Tr[Σ+ Σ̂n − 2(Σ1/2Σ̂nΣ
1/2)1/2] ≤ ϵ2n,

for which the von Neumann’s minimax theorem holds. If Σ∗
n

solves the above display (Σ∗
n may depend on x), the DRO

problem becomes

min
x∈X

[x⊤,−1] ·Σ∗
n · [x;−1]. (DRO)

As a result, the BDR counterpart is

min
x∈X

[x⊤,−1] · [βnΣ
∗
n + (1− βn)Σ̂n] · [x;−1]. (BDR)

IV. STATISTICAL PROPERTIES OF BDR MODEL (10)
This subsection studies the asymptotic and non-asymptotic

statistical properties of the new BDR model (10) under any
appropriate distributional ball Bϵn(P̂n), for example, the ϕ-
divergence ball or the Wasserstein ball, whose mathematical
definitions can be found in Appendix A-B. Statistical concepts
such as Glivenko–Cantelli class, Donsker class, and Brownian
bridge can be found in Appendix A-D; see also [26, Chap. 19].
The key notations in this subsection are given in Table I.

TABLE I
NOTATION LIST. (“OPT. SLN.” STANDS FOR OPTIMAL SOLUTION.)

Notation Definition Mathematical Form
v(x) True Cost EP0h(x, ξ)
vn(x) SAA Cost EP̂nh(x, ξ)
vr,n(x) DRO Cost maxP∈Bϵn (P̂n) EPh(x, ξ)

vb,n(x) BDR Cost βn maxP∈Bϵn (P̂n) EPh(x, ξ)

+(1−βn)EP̂nh(x, ξ)
X0 True Opt. Sln. Set argminx∈X v(x)

X̂n SAA Opt. Sln. Set argminx∈X vn(x)

X̂r,n DRO Opt. Sln. Set argminx∈X vr,n(x)

X̂b,n BDR Opt. Sln. Set argminx∈X vb,n(x)
x0 True Opt. Sln. x0 ∈ X0

x̂n SAA Opt. Sln. x̂n ∈ X̂n

x̂r,n DRO Opt. Sln. x̂r,n ∈ X̂r,n

x̂b,n BDR Opt. Sln. x̂b,n ∈ X̂b,n

A. Asymptotic Properties of (10)
We consider the x-parametric function class

H := {h(x, ·) : Ξ → R|x ∈ X} (11)

indexed by X . The asymptotic properties of Bayesian distribu-
tionally robust model (10) are given below, which illustrate the
learning effectiveness when the sample size becomes infinitely
large, as the generalization error approaches zero.

Theorem 1 (Asymptotic Properties of (10)). Consider the
nominal problem (2) and its Bayesian distributionally robust
counterpart (10). If the following conditions hold

C1) The DRO objective vr,n(x) is bounded in Pn
0 -probability

and attainable for x ∈ X ′ ⊆ X ;
C2) The weight coefficient βn ∈ [0, 1] for every n and√

nβn → 0 as n → ∞;
C3) The function class H in (11) is P0-Glivenko–Cantelli;
C4) At least one of the following properties holds for the

function v(x) = EP0
h(x, ξ):

C4a) v(x) is continuous on X ′;
C4b) v(x) has the unique global minimizer x0 on X ′;

C5) The function class H in (11) is P0-Donsker;
C6) EP0

[h(x̂n, ξ)− h(x0, ξ)]
2 p−→ 0 as x̂n

p−→ x0,1

then the following statements are true.
S1) (Point-Wise Consistency of Objective Function.) For every

x ∈ X ′, we have vb,n(x)
p−→ v(x) as n → ∞.

S2) (Consistency of Optimal Value.) For every x̂b,n ∈ X̂b,n ⊆
X ′ and every x0 ∈ X0 ⊆ X ′, we have vb,n(x̂b,n)

p−→
v(x0) as n → ∞. In other words, minx vb,n(x)

p−→
minx v(x) as n → ∞.

S3) (Consistency of Optimal Solution.) The limit point of any
solution sequence {x̂b,n} of (10) is a solution of the true
problem (1) in Pn

0 -probability: Pn
0{X̂b,n ⊆ X0} → 1 as

n → ∞.
S4) (Point-Wise Asymptotic Normality of Objective Function.)

For every x ⊆ X ′, we have
√
n[vb,n(x) − v(x)]

d−→
N(0, Vv,x) as n → ∞, where Vv,x := DP0

h(x, ξ) denotes
the variance of h(x, ξ) under P0.

S5) (Asymptotic Normality of Optimal Value.) For every
x̂b,n ∈ X̂b,n ⊆ X ′ and every x0 ∈ X0 ⊆ X ′, if x̂b,n

p−→
x0, we have

√
n[vb,n(x̂b,n) − v(x0)]

d−→ N(0, Vv) as
n → ∞, where Vv := DP0h(x0, ξ).

Proof. See Appendix D-A in the supplementary materials.

Remark 3 (Practicability of Conditions). The conditions C1)-
C6) stipulated in Theorem 1 are not restrictive, as they can be
easily fulfilled in practice; concrete examples can be found in
Appendix B. □

Note that in conducting minimization over x, it is sufficient
to only consider the subset X ′ where objective functions are
finite-valued. Note also that when the DRO objective vr,n(x)
is finite at x, the SAA objective vn(x) and the true objective
v(x) will be finite as well because P̂n and P0 are included in
Bϵn(P̂n) for sufficiently large ϵn. The asymptotic normality of
the optimal solution of the BDR model (10), which requires
stronger and therefore more restrictive technical conditions, is
deferred to Appendix D-B in the supplementary materials.

B. Non-Asymptotic Properties of (10)

First, we discuss the one-sided generalization bound, which
is a crucial non-asymptotic property in machine learning.

DRO learning has better generalization ability than traditional
ERM learning because by reducing DRO cost vr,n(x), true cost
v(x) can also be diminished; however, ERM cost vn(x) cannot
upper bound v(x). Nevertheless, DRO learning is usually

1The notations
p−→ and d−→ mean the convergence in probability and

distribution, respectively.



5

criticized for its conservatism. Specifically, to guarantee that
the true distribution P0 is included in the distributional ball, the
radius ϵn of the ball should be sufficiently large (cf. Appendix
A-B2), which leads to that for every x, the upper bound vr,n(x)
may be extremely loose. In what follows, we show that BDR
model (10) can be less conservative than the DRO model when
the same distributional ball (with the same radius ϵn) is shared.

Theorem 2 (Generalization Bound of (10)). For every η ∈
(0, 1] and every βn ∈ [β∗

n, 1], if Pn
0 [P0 ∈ Bϵn(P̂n)] ≥ 1 − η,

then the true cost v(x) is upper bounded, with Pn
0 -probability

at least 1− η, by the BDR cost vb,n(x):

v(x) ≤ βnvr,n(x) + (1− βn)vn(x), ∀x ∈ X , (12)

where the smallest (i.e., best) value β∗
n of βn satisfying the

above display is

β∗
n := max

{
max
x∈X

v(x)− vn(x)

vr,n(x)− vn(x)
, 0

}
(13)

which takes values on [0, 1] and we assume that 0/0 = 0; in
addition, β∗

n < 1 if one of the following conditions holds:
C1) vr,n(x) > v(x) for every x ∈ X ;
C2) vn(x) = v(x) for all x ∈ X such that vr,n(x) = v(x).

Proof. See Appendix D-C in the supplementary materials.

Remark 4. In Theorem 2, the best value β∗
n depends on the

unknown true distribution P0 [via the true cost function v(x)],
which cannot be obtained in practice. This is reminiscent of the
practical limitation of the DRO theory where the best radius
ϵ∗n also depends on the unknown true distribution P0; see
Appendix A-B2, especially (22). Hence, both DRO and BDR
require empirical parameter tuning in real-world operation.
However, Theorem 2 suggests that whenever DRO is empirically
perfectly tuned, it is possible to further improve performance
by tuning the BDR parameter βn; recall that DRO and BDR
share the same distributional ball (with the same ϵn). □

Theorem 2 justifies the rationale of the BDR learning (10)
from the perspective of generalization theory. The BDR general-
ization bound vb,n(x) in (12) tightens the DRO generalization
bound vr,n(x) for every distributional ball Bϵn(P̂n) such
that P0 ∈ Bϵn(P̂n) because vr,n(x) ≥ vn(x). To clarify
further, suppose that ϵ∗n is the smallest value of ϵn such that
P0 ∈ Bϵ∗n

(P̂n). According to the DRO theory, the DRO cost
vr,n(x) with ϵn = ϵ∗n is the tightest upper bound for the true
cost v(x). However, Theorem 2 indicates that this DRO bound
vr,n(x) can be further refined to the BDR bound vb,n(x) even
when ϵn = ϵ∗n. The refinement is non-trivial (i.e., β∗

n < 1) if
one of the conditions in Theorem 2 holds, which is the case, e.g.,
when Ξ is a subspace of Rk. To be specific, see [18, Thm. 6.3]
and [2] for v̄r,n(x) > v(x) when Ξ ̸= Rk, where v̄r,n(x) is a
computational surrogate (i.e., finite-dimensional reformulation)
of vr,n(x). To avoid the conservatism of the DRO method,
[27] introduces an alternative modeling framework known as
robust satisfying. However, [27] is not rooted in DRO, and
therefore, most existing DRO-based machine-learning methods
cannot be directly upgraded.

Another concrete example for Theorem 2 is as follows.

Example 1. According to [18, Thm. 6.3], if the cost function
h is convex in ξ on Ξ = Rk, the support set Ξ of ξ is a
closed and convex set, the order p of the Wasserstein distance
is set to p := 1, and the employed metric d in the Wasserstein
distance is specified by a proper norm ∥ · ∥ on Ξ, then the
distributionally robust optimization objective exactly equals to
a regularized SAA objective, point-wisely for every x ∈ Rl:
i.e., for every x ∈ Rl, we have

vr,n(x) := max
P:Wp(P,P̂n)≤ϵn

EPh(x, ξ) = vn(x) + ϵn · f(x)

where f(x) := maxθ∈Ξ{∥θ∥∗ : h∗(x,θ) < ∞} is a
regularization term,2 ∥ · ∥∗ denotes the dual norm of ∥ · ∥, and
h∗(x,θ) denotes the Fenchel convex conjugate of h(x, ξ) point-
wisely for every given x ∈ Rl. As a result, the generalization
bound specified by the DRO model is

v(x) ≤ vr,n(x) = vn(x) + ϵnf(x), ∀x ∈ Rl.

However, Theorem 2 supports that the bound above can be
tightened to

v(x) ≤ vb,n(x) ≤ vn(x)+βnϵnf(x), ∀x ∈ Rl, ∃βn ∈ [0, 1].

The best value of βn is β∗
n := maxx∈X

v(x)−vn(x)
ϵnf(x)

≤ 1. The
inequality is strict if 1) the radius ϵn is large; or 2) X is a
specified subspace of Rl on which v(x) < vn(x) + ϵnf(x).
One may interpret βnϵn as the radius of a new distributional
ball that may not include P0 in the DRO sense. However,
the true cost can still be upper-bounded, indicating that the
conventional DRO bound is not sufficiently tight on the focused
region X , although it may be tight on the whole space Rl. □

A specific instance of Example 1 is given below.

Example 2 (1-norm Linear Regression). Let the data vector
be ξ := [ξin; ξout] and the true data generating model be
ξout = x⊤

0 ξin + e, where ξin ∼ N(0,Ek−1) denotes the feature
vector, Ek−1 denotes the (k − 1)-dimensional identity matrix,
the standard Gaussian variable e ∈ R denotes the regression
residual (uncorrelated with ξin), and ξout ∈ R denotes the
response. Consider the 1-norm linear regression problem.
Supposing that ξ ∼ P0, we have

v(x) = EP0
|ξout − x⊤ξin|,

vn(x) = EP̂n
|ξout − x⊤ξin|,

and according to Example 1 and [29, Eq. (4.5)],

vr,n(x) = maxP∈Bϵn (P̂n)
EP|ξout − x⊤ξin|

= EP̂n
|ξout − x⊤ξin|+ ϵn∥(−x, 1)∥∗.

As a demonstration, we particular ∥ ·∥∗ into the vector 2-norm.
Therefore, the best value β∗

n is

β∗
n = max

x

EP0 |ξout − x⊤ξin| − EP̂n
|ξout − x⊤ξin|

ϵn∥(−x, 1)∥2
.

To visualize, we examine a one-dimensional case. We set the
true parameter be x0 = 1, the sample size n = 1, and the
radius ϵn = 1. Under one realization of P̂n, the true, SAA,

2Similar results are reported in, e.g., [23], [28], [20], [2], where f(x) may
be of different forms.
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DRO, and BDR costs are shown in Fig. 1, where we assume
that x takes grid values on [−4, 6] with step size of 0.01. As
we can see, if the feasible region of the decision variable x is
required to be [−1.7, 1.7], the BDR bound in Fig. 1(a) is no
longer tight but the BDR bound in Fig. 1(b) becomes tight. □
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(c) β = 0.7

Fig. 1. Cost functions; the SAA cost cannot upper bound the true cost. (a):
when β = 0.50956, the BDR cost function provides a tight upper bound for
the true cost function; (b): when β < 0.50956, the BDR cost function cannot
upper bound the true cost function; (c): when β > 0.50956, the BDR cost
function provides a loose upper bound for the true cost function. If the feasible
region of the decision variable x is required to be [−1.7, 1.7] rather than R,
the BDR bound in (a) is no longer tight but that in (b) becomes tight. (Source
Codes: https://github.com/Spratm-Asleaf/Robustness-Specificity.)

As a result of Theorem 2, focusing on the Bayesian
distributionally robust solution x̂b,n, the true cost v(x̂b,n) of
the BDR model is upper bounded, with Pn

0 -probability at least
1− η, as v(x̂b,n) ≤ βnvr,n(x̂b,n) + (1− βn)vn(x̂b,n).

Next, we discuss the unbiasedness of the BDR model. The
DRO model is always an upward (i.e., positively) biased
estimator of the true optimal cost for all radius ϵn ≥ 0 such that
P0 ∈ Bϵn(P̂n), while the SAA model is always a downward
(i.e., negatively) biased estimator.3 However, the BDR model
can be unbiased with a proper βn.

Theorem 3 (Unbiasedness). For every n, there exists βn ∈
[0, 1] such that the BDR-estimated cost vb,n(x̂b,n) is an
unbiased estimate of the true optimal cost v(x0).

Proof (sketch). We first show that the DRO model is an upward
(positively) biased model and the SAA model is a downward
(negatively) biased model. Then, the BDR model is proved to be
unbiased. For details, see Appendix D-D in the supplementary
materials.

The BDR model’s unbiasedness indicates that achieving
asymptotic statistical property is possible in finite-sample
learning; note that this result is theoretically impossible for
DRO and SAA models. However, a βn satisfying Theorem
2 [i.e., (12)] does not necessarily satisfy Theorem 3 for

3For technical details, see the proof of Theorem 3.

unbiasedness, and vice versa. The finite-sample unbiasedness
shows the statistical superiority of BDR over SAA and DRO.

V. SOLUTION METHOD OF BDR MODEL (10)
To solve BDR model (10), the key is to reformulate the DRO

sub-problem maxP∈Bϵn (P̂n)
EPh(x, ξ) under a specified distri-

butional ball Bϵn(P̂n). This paper examines the ϕ-divergence
and Wasserstein distributional balls; see Appendix A-B.

A. ϕ-Divergence

We start with the ϕ-divergence ball whose mathematical
definition is available in Appendix A-B1; this case is practical
if the underlying true data-generating distribution P0 is discrete.

Theorem 4. Consider the ϕ-divergence distributional ball
Bϵn,ϕ(P̂n) induced by the ϕ-divergence. The DRO sub-problem
maxP∈Bϵn,ϕ(P̂n)

EPh(x, ξ) can be reformulated to

max
µ∈Rn

∑n
i=1 µi · h(x, ξi), s.t. Fϕ(µ∥µ̄) ≤ ϵn, (14)

where Fϕ(µ∥µ̄) defines the ϕ-divergence of the discrete dis-
tribution µ := [µ1, µ2, . . . , µn] from the nominal distribution
µ̄ := [1/n, 1/n, . . . , 1/n]; note that µ, µ̄ ∈ Rn.

Proof. From Appendix A-B1, we know that distributions P in
Bϵn,ϕ(P̂n) have the same support as P̂n. Hence, distributions
in Bϵn,ϕ(P̂n) can be characterized as P =

∑n
i=1 µiδξi , which

completes the proof.

A concrete example of the constraint in (14) can be obtained
using the Kullback–Leibler (KL) divergence: that is,

Fϕ(µ∥µ̄) :=
n∑

i=1

µi · log(µi/µ̄i) =

n∑
i=1

µi · log(nµi) ≤ ϵn.

As a result, the solution of BDR method (10) is given in the
corollary below.

Corollary 1 (Solution of BDR Method (10) Under
ϕ-Divergence Ball). The BDR model (10) under the ϕ-
divergence ball can be reformulated into

min
x∈X

βn max
µ∈Rn

n∑
i=1

µi · h(x, ξi) + (1− βn)

n∑
i=1

1

n
· h(x, ξi)

s.t. Fϕ(µ∥µ̄) ≤ ϵn,
(15)

which is a finite-dimensional optimization. □

B. Wasserstein Distance

We then study the Wasserstein distributional ball whose
mathematical definition is available in Appendix A-B2.

Theorem 5. Consider the Wasserstein distributional ball
Bϵn,p(P̂n) induced by the order-p Wasserstein distance. Sup-
pose one of the following conditions holds: 1) For ev-
ery x, h(x, ξ) is continuous in ξ on Ξ; 2) For every x,
h(x, ξ) is concave in ξ on Ξ. Then, the DRO sub-problem
maxP∈Bϵn,p(P̂n)

EPh(x, ξ) can be reformulated to

max
{ζj}j∈[n]

1
n

∑n
j=1 h(x, ζj), s.t. 1

n

∑n
j=1 d

p(ξj , ζj) ≤ ϵpn,

(16)

https://github.com/Spratm-Asleaf/Robustness-Specificity
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where d is a distance on Ξ.

Proof. See Appendix E in the supplementary materials.

A concrete example of the constraint in (16) can be obtained
using the 2-norm on Ξ and p := 1, that is,

1
n

∑n
j=1 ∥ξj − ζj∥2 ≤ ϵn.

As a result, the solution of the BDR method (10) is given in
the corollary below.

Corollary 2 (Solution of BDR Method (10) Under Wasserstein
Ball). The BDR model (10) under the Wasserstein ball can be
reformulated into

min
x∈X

βn max
{ζj}j∈[n]

1

n

n∑
j=1

h(x, ζj) + (1− βn)

n∑
i=1

1

n
· h(x, ξi)

s.t.
1

n

n∑
j=1

dp(ξj , ζj) ≤ ϵpn,

(17)
which is a finite-dimensional optimization. □

C. Numerical Solution

The algorithm below, adapted from stochastic gradient
descent (SGD) [30], provides a numerically iterative method
to solve (15) and (17) for gradient-based learning (e.g., neural
networks).

Algorithm 1 (BDR-GD to Solve (15) and (17)). With proba-
bility βn we use the gradient of the DRO term maxµ

∑n
i=1 µi ·

h(x, ξi) or max{ζj}j∈[n]

1
n

∑n
j=1 h(x, ζj), and with probability

1− βn we use the gradient of the SAA term 1
n

∑n
i=1 h(x, ξi).

For example, in the t-th iteration step, ξt is sampled from P̂n

and pt is sampled from the uniform distribution U(0,1]. Then
the stochastic gradient, with respect to x,

gx,t =

{
∇xh(x, ξt), βn ≤ pt,

∇x maxζt h(x, ζt) s.t. dp(ξt, ζt) < ϵp, βn > pt,

is calculated to update the hypothesis parameter x. □

D. Hyper-Parameter Tuning

As demonstrated by the statistical properties in Theorem 2,
the generalization performance of BDR learning is significantly
influenced by the value of the hyper-parameter βn. However,
as highlighted in Remark 4, the optimal value β∗

n for βn

cannot be theoretically determined due to its dependence
on the unknown true distribution P0. Therefore, in practice,
βn can be empirically tuned using, e.g., grid search, cross-
validation, and bootstrapping. This is a common practice of
hyperparameter searching in, e.g., regularized SAA learning
(4) and DRO learning (5). Experiments in Section VII show
that it is computationally lightweight to find some βn such
that BDR can outperform both DRO and SAA.

VI. PRACTICAL INSIGHTS FROM BDR LEARNING

Suppose that µ∗ solves (15) and {ζ∗j }j∈[n] solves (17).
Corollaries 1 and 2 motivate two important insights in Examples
3 and 4, respectively.

Example 3 (Sample Weight Modification). In ERM learning
(2), we work on equal-weighted n samples {ξi}i∈[n], while in
DRO learning minx∈X maxP∈Bϵn,ϕ(P̂n)

EPh(x, ξ) with the ϕ-
divergence ball, the weights of samples {ξi}i∈[n] are modified
into µ∗. However, in BDR learning (15), the weight of ξi is
given by βnµ

∗
i + (1− βn)/n. □

An application of Example 3 is “hard sample mining” [31],
where βn balances worst-case weight µ∗

i and homogeneous
weight 1/n for sample ξi.

Example 4 (Data Augmentation). ERM learning (2) works
on equal-weighted n nominal samples {ξi}i∈[n], while DRO
learning minx∈X maxP∈Bϵn,p(P̂n)

EPh(x, ξ) with the Wasser-
stein ball constructs equal-weighted n adversarial samples
{ζ∗j }j∈[n]. In contrast, BDR learning (17) leverages 2n samples
{ζ∗j }j∈[n]∪{ξi}i∈[n] with weight βn/n for adversarial samples
{ζ∗j }j∈[n] and weight (1−βn)/n for nominal samples {ξi}i∈[n]:
it enables data augmentation by combining DRO-generated
adversarial samples and the nominal samples in SAA. □

In robust deep learning, DRO-based adversarial training
is widely used but infamous for its poor performance due
to conservatism [32]. BDR learning, however, can mitigate
this issue by incorporating SAA learning, which is shown by
experiments in Subsection VII-B.

VII. APPLICATIONS AND EXPERIMENTS

We show the practical benefits of the BDR learning frame-
work through experimental results on real-world tasks such
as 2D image and 3D point cloud classifications. Support
vector machines and deep neural networks are specifically
leveraged. All the source codes are available online at GitHub:
https://github.com/Spratm-Asleaf/Robustness-Specificity.

A. Linear Model: BDR Support Vector Machine

We consider the binary classification problem on MNIST
dataset [33] to distinguish similar handwritten digits 4 and
9. We adopt the support vector machine (SVM) as the
classification algorithm and solve the problem under the
frameworks of BDR, DRO, and SAA, respectively. Denote
the i-th image’s pixel vector as Ii ∈ R784 and its label as
Yi ∈ {−1, 1}, i.e., ξi := (Ii, Yi). We choose the order-1
Wasserstein distance to define a distributional ball under the
metric [2]

d (ξi, ξj) := ∥Ii − Ij∥∞ + κ · 1{Yi ̸=Yj}, (18)

where ∥·∥∞ denotes the ∞-norm and κ quantifies the cost of
reversing a label. Hinge loss is used in SVM, i.e.

h(x, ξ) = h(x, (I, Y )) := max{1− Y · ⟨x, I⟩, 0}.

It can be derived from (17) and [2, Cor. 15] that the BDR
formulation is a linear program; see Appendix C-A1 for

https://github.com/Spratm-Asleaf/Robustness-Specificity
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technical details. We conduct 100 independent trials, in each
of which, 80% of the images are randomly selected to train the
model and the remaining 20% images are used for testing. For
BDR, we choose β from {0.3, 0.5, 0.7}. For BDR and DRO,
radius ϵ is chosen from {a× 10−b | a = 1, · · · , 9, b = 4, 3, 2}
and κ is chosen from {0.1, 0.25, 0.5, 0.75}. The results are
shown in Fig. 2.
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Fig. 2. Average test accuracy for 4 vs 9 over 100 trials. Averaged CPU times
(seconds): BDR = 68, DRO = 66, and SAA = 7.

It can be seen in Fig. 2(a) that the performances of BDR and
DRO are significantly affected by ϵ and κ. The test accuracy
first increases when ϵ increases but drops afterwards; the peak
occurs in the range of ϵ ∈ [0.005, 0.05]. This phenomenon
agrees with our claim that the radii of the ambiguity sets can
neither be too large nor too small: If the ambiguity sets are
too small, robust methods cannot provide sufficient robustness;
however, if the ambiguity sets are too large, robust methods are
too conservative. Among different κ, κ = 0.25 works best for
both BDR and DRO. Fig. 2(b) shows an accuracy comparison
among BDR (with different β), DRO, and SAA, under κ = 0.25
and ϵ = 0.05 as selected above, where BDR with β = 0.3 has
higher accuracy compared to that with β = 0.5 and β = 0.7.
Fig. 2(a) also supports our claim that BDR is less conservative
than DRO—To be specific, DRO is sensitive to the choice of
ϵ because a slight change of ϵ can lead to a large change in
accuracy (especially around ϵ = 0.07); in contrast, BDR is
more robust to the choice of ϵ.

For more experimental results of BDR SVM on MNIST and
UCI data sets, as well as running times, see Appendix C-A.

B. Deep Learning Model: BDR Learning

We present an implementation of deep BDR learning
(DBDRL) and demonstrate the potential of our BDR model in
enhancing the performance of deep models on various tasks.

Tasks: We apply the proposed BDR model to 2D image
classification tasks using MNIST [33], CIFAR-10, and CIFAR-
100 [34] datasets, as well as 3D point cloud classification
utilizing ModelNet40 [35] dataset. To evaluate the generaliza-
tion capacity of our method, we perform experiments under a
low-shot data setting; that is, the model is learned on a subset
of the training dataset. This setup means that a learning model
yielding higher testing performance on a small training dataset
has a better generalization capability.

Implementation: We consider the objective of DBDRL
as presented in (17). Specifically, we employ the convex
cross-entropy loss [36] as the function h for our learning.

Additionally, we implement the BDR-GD in Algorithm 1 for
DBDRL. The DRO term in BDR-GD is actualized through
Adversarial Training (AT) techniques, with the employment of
a specific Projected Gradient Descent (PGD) method [37] to
perform the maximization and construct adversarial samples.
For PGD implementation, we use the order-2 distance for the
constraints; using notations in (18), an example is given by

d (ξi, ξj) = ∥Ii − Ij∥2 .

We follow the official implementation to train our models in
both 2D and 3D tasks except for the low-shot data setting and
BDR-GD utilization. Further details, such as the parameters
of training and PGD, are put in Appendix C-B.

Results of MINIST: We implement the WideResNet-28
(WRN) [38] for our 2D experiments. We first demonstrate
the capability of DBDRL with varying β values on the
MNIST dataset. As depicted in Fig. 3, the best β∗, which
is an estimation of β∗

n in Theorem 2, diminishes as the
volume of training data escalates, corroborating the property
of (7). Moreover, we observe that the best BDR models
consistently outperform both their DRO and SAA counterparts;
the advantage of BDR is especially obvious with smaller
training data set. This is consistent with the theoretical analyses
in Section IV.

Fig. 3. Error rate of models trained by partial training sets on MNIST test set.
Various β values are used during training: β = 0 for SAA learning, β = 1
for DRO learning, and β∗ indicating the best value among various β for BDR
learning.

Parameter Tuning: To obtain β∗ during training, we adopt
a validation-based search strategy: we leverage a subset of
the training dataset (20% in our setting) as a validation set
to search for a decent β. We highlight that the search cost is
not significantly high, as it is found that a low precision of
estimation can still enhance performance in practice. In later
experiments, we restrict our search of β∗ to a smaller set, i.e.,
{0.5, 0.1, 0.05, 0.01}, and employ early stopping techniques to
expedite the search process.

Main Results of 2D and 3D Classification: With the
same tuning strategy for βn, we showcase the superiority
of our methods on CIFAR datasets in Table II. The used
model is WRN-28 which is the same as MNIST experiments.
We also employ DBDRL in 3D point cloud classification by
implementing two models, PointNet [39] and DGCNN [40].
We utilize the above search method of β∗ and demonstrate the
consistent best performances of our BDR methods in Table III.
Notably, DBDRL can improve the model performance from
both the SAA learning and DRO learning across all tasks.
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Additionally, we note that β∗ estimation may not be accurate,
as our search is limited to only a small set {0.01, 0.05, 0.1, 0.5}.
However, high estimation accuracy of β∗ is not critical in
practice because, as depicted in Fig. 4, a wide range of β
values can make BDR outperform the DRO and SAA. Overall,
it is computationally lightweight to search for decent βs that
enable BDR to outperform DRO and SAA. To illustrate this,
we provide a detailed complexity analysis in Appendix C-B4
to show that the above search process can be done with trivial
effort while achieving better performance.

TABLE II
ACCURACY (%) OF IMAGE CLASSIFICATION ON CIFAR-10 & CIFAR-100

UNDER LOW-SHOT DATA (10% OR 50% TRAINING DATA) SETTING.

Method CIFAR-10 CIFAR-100
10% 50% 10% 50%

DRO 64.9 86.3 26.2 61.3
SAA 63.5 87.0 24.1 61.6

BDR 66.5 87.3 26.9 63.4
(β∗) (0.05) (0.05) (0.1) (0.05)

TABLE III
ACCURACY (%) OF POINT CLOUD CLASSIFICATION ON MODELNET40 BY

DIFFERENT LEARNING METHODS. DIFFERENT TRAINING DATA RATIOS ARE
UTILIZED. THE ESTIMATED β∗ FOR EACH BDR LEARNING IS ALSO GIVEN.

Model Data ratio Method
β∗

DRO SAA BDR

PointNet
5% 72.9 72.3 72.9 0.5

10% 79.6 79.4 80.6 0.1
100% 88.7 89.1 89.8 0.05

DGCNN
5% 78.4 77.1 79.86 0.1

10% 85.1 84.3 85.8 0.1
100% 91.9 92.1 92.8 0.01

VIII. CONCLUSIONS

This paper proposes the Bayesian distributionally robust
learning framework (9) or (10) that generalizes the Bayesian
method, distributionally robust optimization method, and
regularization method; see Remark 1. The new framework
reveals that there exists a trade-off between the robustness to
the distributional uncertainty and the specificity to the empirical
information; see Remark 2. The new framework also suggests
the design methods of the prior distribution Q in the Bayesian
method (3) and the regularizer f(x) in the regularization
method (4) (see Remark 1), and shows that BDR learning
can be less conservative than DRO learning (see Theorem 2,
Remark 4, Examples 1 and 2, and Figs. 2, 3, and 4). The
asymptotic (i.e., consistencies and asymptotic normalities in
Theorem 1) and non-asymptotic (i.e., generalization bounds in
Theorem 2 and unbiasedness in Theorem 3) properties, and the
solution method (i.e., Corollaries 1 and 2) of the new framework
are studied. In addition, the BDR learning framework reveals
important insights from the perspective of data augmentation;
see Examples 3 and 4. Experiments on diverse real-world
datasets demonstrate the practical usefulness of the proposed
BDR model.

Fig. 4. Test set accuracy v.s. β across various tasks. Upper Panel: PointNet
on ModelNet40 with 10% (left) and 50% (right) training data. Lower Panel:
WRN-18 on CIFAR-10 with 10% (left) and 50% (right) training data. The
marker “◦” stands for searching set of β: i.e., {0.01, 0.05, 0.1, 0.5}. (NB:
β = 0 for SAA learning, β = 1 for DRO learning.)

The future research direction is to study alternatives for
the Dirichlet-process priors for the second-order probability
measure Q in the Bayesian model (3), which possibly motivates
other new robust learning models than the proposed BDR
models in (9) and (10). Possible replacements are Dirichlet-
process mixture priors [4, Chap. 5], tail-free process priors [4,
Sec. 3.6], among many others.

APPENDIX A
APPENDICES OF SECTION II

A. Notations

Notations used in this paper are summarized in Table IV.

B. Similarity Measures of Distributions and Distributional
Balls

1) ϕ-Divergence: Suppose P is absolutely continuous with
respect to P̄. Let ϕ : R+ → {R ∪ +∞} denote a convex
function that satisfies ϕ(1) = 0 and 0ϕ(0/0) = 0. The ϕ-
divergence (i.e., f -divergence) of P from P̄, generated by ϕ,
is defined as

Fϕ(P∥P̄) =
∫
Ξ

ϕ

(
dP
dP̄

)
P̄(dξ), (19)

where dP/dP̄ is the Radon–Nikodym derivative of P with
respect to P̄. When ϕ(t) := t ln t for all t > 0, the ϕ-divergence
specifies the well-known Kullback–Leibler divergence; cf. [41,
Table 2].

A ϕ-divergence distributional ball with radius ϵ ≥ 0 and
center P̄ is defined as

Bϵ,ϕ(P̄) := {P ∈ M(Ξ)|Fϕ(P∥P̄) ≤ ϵ}.

If ϵ = 0, the ball Bϵ,ϕ(P̄) reduces to the singleton that contains
only P̄. In some literature, the ball is also defined as Bϵ,ϕ(P̄) :=
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TABLE IV
FULL NOTATION LIST

Symbol Interpretation

M(Ξ)
all distributions on (Ξ,BΞ) where BΞ is the
Borel σ-algebra on Ξ

BM(Ξ) Borel σ-algebra on M(Ξ)

P0 true population distribution

P̂n
empirical distribution supported on n
i.i.d. samples

P̂ a prior estimate of P0 based on prior knowledge

P̄
reference distribution working as a proper
estimate of P0, which can be the empirical P̂n

or the prior P̂, among many others

Pn
0

n-fold product measure induced by P0

(i.e., joint distribution of n i.i.d. samples)

[n] [n] := {1, 2, . . . , n}, the running index set

∆(P, P̂n)
statistical similarity measure between P and P̂n;
∆ can be any possible divergences or statistical
distances

Bϵ(P̂n)
:= {P ∈ M(Ξ)|∆(P, P̂n) ≤ ϵ}, closed
distributional ball with radius ϵ and center P̂n

N(µ,Σ)
Gaussian distribution with mean µ and
covariance Σ

a.s.−→ converges almost surely
p−→ converges in probability

d−→ converges in distribution

op(1)
if a sequence an = op(1), then an converges
to zero in probability

d(x,y) distance between two points x and y

d(x,X )
:= infy∈X ∥x− y∥,
distance between the point x and the set X

d(X ,Y)
:= supx∈X d(x,Y),
distance between the two sets X and Y

EP[·],DP[·]
the expectation operator and the covariance
operator, respectively, with respect to the
distribution P

∇xh(x0, ξ)
the gradient, i.e., Jacobian, of h(x, ξ) with
respect to x evaluated at x0

∇2
xh(x0, ξ)

the second-order gradient, i.e., Hessian, of
h(x, ξ) with respect to x evaluated at x0

V −⊤ := [V −1]⊤ the transpose of the inverse of the matrix V

[a, b] and [a; b]
MATLAB notation for row and column
concatenation of a and b, respectively

{P ∈ M(Ξ)|Fϕ(P̄∥P) ≤ ϵ} where P and P̄ are swapped. The
two versions are not equivalent because the ϕ-divergence is
not guaranteed to be symmetric in general.

2) Wasserstein Distance: The order-p Wasserstein distance
between the two distributions P and P̄ is defined as

Wp(P, P̄) =
[
infπ∈M(Ξ×Ξ) Eπd

p(ξ1, ξ2)
] 1

p

=
[
infπ∈M(Ξ×Ξ)

∫
Ξ×Ξ

dp(ξ1, ξ2)π(dξ1,dξ2)
] 1

p

,

(20)
where d is a distance on Ξ, p ≥ 1, and π is a joint distribution
on Ξ× Ξ with marginals P and P̄.

An order-p Wasserstein distributional ball with radius ϵ and
center P̄ is defined as

Bϵ,p(P̄) := {P ∈ M(Ξ)|Wp(P, P̄) ≤ ϵ}.

If ϵ = 0, the ball Bϵ,p(P̄) reduces to the singleton that contains
only P̄.

Wasserstein balls admit the following concentration proper-
ties. Suppose the true population distribution P0 has a light
tail: That is, there exist α > p ≥ 1 (but p ̸= k/2) and finite
A > 0 such that EP0

[exp (∥ξ∥α)] ≤ A (recall that k is the
dimension of ξ). Then, there exist constants c1, c2 > 0 such
that

Pn
0

[
P0 ∈ Bϵn,p(P̂n)

]
≥ 1− η (21)

holds, for any η ∈ (0, 1], when

ϵn ≥


(

log(c1/η)
c2n

)min{1/k,1/2}
if n ≥ log(c1/η)

c2
,(

log(c1/η)
c2n

)1/α

if n < log(c1/η)
c2

.
(22)

Note that c1 and c2 are determined by α, A, and k. This result
is attributed to [1, Thm. 18]. The difficulty of applying this
result in practice is that the involved constants α and A cannot
be exactly obtained because the population distribution P0 is
unknown, and so are c1 and c2.

When the support set Ξ is finite and bounded (i.e., P0 is
discrete), there exist concentration properties of P̂n with respect
to the Wasserstein distance that do not depend on unknown
constants; see, e.g., [29, pp. 42].

C. Wasserstein DRO Models

1) Existence of The Solution of Wasserstein DRO Models:
Suppose (Ξ, d) is a proper,4 complete, and separable metric
space, h(x, ξ) is upper semi-continuous in ξ on Ξ and
EP̄|h(x, ξ)| < ∞ for every x, and P̄ has a finite p-th moment:
That is, for every ξ0 ∈ Ξ, we have

∫
Ξ
dp(ξ, ξ0)P̄(dξ) < ∞.

Then, for every x, the optimal value of the Wasserstein DRO
problem

max
P:Wp(P,P̄)≤ϵ

∫
Ξ

h(x, ξ)P(dξ) (23)

is finite if and only if there exist ξ0 ∈ Ξ and c1(x) > 0 such
that

h(x, ξ) ≤ c1(x)[1 + dp(ξ, ξ0)], ∀ξ ∈ Ξ. (24)

In addition, the optimal value is attainable (by one P∗ such
that Wp(P∗, P̄) ≤ ϵ) if there exist ξ0 ∈ Ξ, c1(x) > 0, and
c2 ∈ (0, p) such that

h(x, ξ) ≤ c1(x)[1 + dc2(ξ, ξ0)], ∀ξ ∈ Ξ. (25)

The results above can be seen in, e.g., [17], [29]. Note that
(24) is in analogy to the Lipschitz continuity which limits the
“change rate” of a function. To clarify further, for example, by
letting p := 1 and d := ∥ · ∥ (i.e., the metric d is induced by a
norm ∥ · ∥), we can see that (24) is in analogy to h(x, ξ) ≤
h(x, ξ0)+L(x)∥ξ−ξ0∥, for every ξ, ξ0 ∈ Ξ, where L(x) > 0
is the Lipschitz constant. For this reason, in literature, e.g.,

4A metric space (Ξ, d) is proper if for any ϵ > 0 and ξ0 ∈ Ξ, the closed
ϵ-ball Bϵ(ξ0) := {ξ ∈ Ξ|d(ξ, ξ0) ≤ ϵ}, is compact.
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[29], [42], (24) is called the “finite-growth-rate” condition for
the function h.

In this paper, for practicality, we consistently assume that
the condition (25) is satisfied so that it is safe to replace the
supremum with the maximum in the DRO model.

2) Reformulation of Wasserstein DRO Models: According
to, e.g., [24, Thm. 1] and [42, Thm. 1],5 the Wasserstein DRO
problem (23) is equivalent to its Lagrangian dual:6

min
λ≥0

{
λϵp +

∫
Ξ

max
ξ∈Ξ

{
h(x, ξ)− λ · dp(ξ, ξ̄)

}
P̄(dξ̄)

}
. (26)

If P̄ =
∑n

i=1 µ̄iδξi is a discrete distribution, e.g., an empirical
distribution, supported on n points {ξi}i∈[n], then (26) becomes

min
λ≥0

{
λϵp +

n∑
i=1

µ̄i max
ξ∈Ξ

{
h(x, ξ)− λ · dp(ξ, ξi)

}}
. (27)

3) Support Set of Worst-Case Distributions: If P̄ is supported
on n points in Ξ, then the worst-case distribution solving (23)
is supported on at most n+ 1 points in Ξ; see [17, Thm. 4],
[42, Cor. 2].

Special cases when h is concave or piece-wise linear in ξ
or when P̄ := P̂n are discussed in, e.g., [18], [2], [1], [43].

D. Glivenko–Cantelli Class, Donsker Class, and Brownian
Bridge

Consider a function class F := {f : Ξ → R}.

Definition 2 (Glivenko–Cantelli Class). Suppose for every f ∈
F , EP0

f(ξ) is defined7 and finite; that is, f is P0-integrable.
The function class F is called P0-Glivenko–Cantelli if

sup
f∈F

|EP̂n
f(ξ)− EP0f(ξ)|

a.s.−→ 0. (28)

Intuitively, if F is a Glivenko–Cantelli class, then the uniform
strong law of large numbers holds on F . □

Definition 3 (Donsker Class). Consider an empirical process

Gn(f) :=
√
n[EP̂n

f(ξ)− EP0f(ξ)], ∀f ∈ F (29)

indexed by the function class F . That is, {Gn(f)|f ∈ F} in
(29) is a stochastic process indexed by F; the randomness
comes from the (random) empirical measure P̂n. Suppose for
every f ∈ F , DP0f(ξ) is defined and finite; that is, f is P0-
square-integrable. The function class F is called P0-Donsker if
the empirical (stochastic) process Gn converges in distribution
to a Brownian bridge (stochastic) process:

Gn
d−→ GP0 , (30)

where GP0
is a zero-mean P0-Brownian bridge on F with

uniformly continuous sample paths with respect to the semi-
metric

√
DP0 [f1(ξ)− f2(ξ)] between f1 ∈ F and f2 ∈

F; in addition, GP0
(f) is tight for every f ∈ F; i.e.,

supf∈F |GP0
(f)| < ∞ in P0-probability. Intuitively, if F is a

5The finite growth-rate assumption for the function h in [42] is equivalent
to require (24); see Lemma 2 therein.

6λ is the dual variable for the constraint in (23).
7At least one of the positive part and the negative part of f has finite

integral.

Donsker class, then the uniform central limit theorem8 holds
on F . □

A zero-mean P0-Brownian bridge GP0 on F is a Gaussian
process on F satisfying the following two conditions:

1) For every f ∈ F , GP0(f) is a random variable with mean
of zero and variance of DP0(f).

2) For every integer r and every possible collection
of functions {f1, f2, . . . , fr} taken from F , the ran-
dom vector [GP0

(f1),GP0
(f2), . . . ,GP0

(fr)]
⊤follows a

r-dimensional multivariate Gaussian distribution with
covariance between GP0(fi) and GP0(fj) being defined
as EP0fi · fj − EP0fi · EP0fj , for every i, j ∈ [r].

Since the values of the Gaussian process GP0 at some functions
f ∈ F are strictly zeros, without any randomness, the Gaussian
process GP0

is called a Brownian bridge because some values
are tied, for example, when f is P0-almost everywhere constant.

APPENDIX B
EXAMPLES SATISFYING THE CONDITIONS IN THEOREM 1

The conditions C1)-C6) in Theorem 1 are not practically
restrictive as they are standard for the DRO model (5) [1],
[18], [17], [20] and the SAA model (2) [44], [26, Chap. 19],
[45, Chap. 5]. The only new requirement is Condition C2);
i.e.,

√
nβn → 0, which is also mild. Some specific situations

where the conditions C1)-C6) in Theorem 1 hold are given
below.

Condition C1) holds if, for example, (25) is satisfied;
Condition C2) holds if, for example, βn := α

n+α , for every
n, where α ≥ 0 is a constant;9

Condition C3) holds if, for example, one of the following
is satisfied:
a) The function class H is finite and every element of H is

P0-integrable;
b) The parameter space X is bounded, every element of H

is P0-integrable, and there exists a P0-integrable function
m(ξ) such that

|h(x1, ξ)− h(x2, ξ)| ≤ m(ξ)∥x1 − x2∥, ∀x1,x2 ∈ X ,
(31)

is satisfied P0-almost surely.
c) The parameter space X is compact, every element of H

is P0-integrable, every element x 7→ h(x, ξ) in H is
continuous on X P0-almost-surely, and there exists a P0-
integrable envelop m(ξ) such that

sup
x∈X

|h(x, ξ)| ≤ m(ξ) (32)

is satisfied P0-almost surely.
d) Every element in H is a finite linear combination of other

P0-integrable functions; that is,

H :=

{
l∑

i=1

xifi(ξ)

∣∣∣∣∣ x ∈ X ⊆ Rl, EP0fi(ξ) < ∞
}
.

(33)

8The uniform central limit theorem is also known as the functional central
limit theorem as a random function(al) sequence (i.e., the empirical process)
converges to a random function(al) (i.e., a Brownian bridge).

9Recall from (6) that this rule is used in the Dirichlet process prior for a
Bayesian non-parametric model.
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This type of H is popular in machine learning, for example,
when the hypothesis class H is a well-designed reproducing
kernel Hilbert space.

e) The function class H is a Vapnik–Chervonenkis (VC) class;
that is, the VC index of H is finite. For example, the
function class in (33) is a VC class.

Condition C4) holds if, for example, one of the following
is satisfied:
a) For any x ∈ X ′, if the function h(x, ξ) is continuous at x,

P0-almost surely, and the function h(xn, ξ) is dominated
by a P0-integrable envelop function m(ξ) for every n,
then v(x) is continuous on X ′. This is by the dominated
convergence theorem.

b) The fact that xn → x implies v(xn) → v(x), for every
xn,x ∈ X ′. This means that v(x) is continuous on X ′.

c) The function h(x, ξ) is convex in x, P0-almost surely, so
that v(x) is convex and therefore continuous in the interior
of X ′. Note that the convexity of v(x) on X ′ implies its
continuity in the interior of X ′.

d) The function h(x, ξ) is strictly convex (resp. strongly
convex) in x, P0-almost surely, so that v(x) is strictly
convex (resp. strongly convex). This means that v(x) is has
a unique global minimizer on X ′.

Condition C5) holds if, for example, one of the following
is satisfied:
a) The function class H is finite and every element of H is

P0-square-integrable;
b) The parameter space X is bounded, every element of H is

P0-square-integrable, and there exists a P0-square-integrable
function m(ξ) such that

|h(x1, ξ)− h(x2, ξ)| ≤ m(ξ)∥x1 − x2∥, ∀x1,x2 ∈ X ,

is satisfied P0-almost surely.
c) Every element in H is a finite linear combination of other

P0-square-integrable functions; that is,

H :=

{
l∑

i=1

xifi(ξ)

∣∣∣∣∣ x ∈ X ⊆ Rl, EP0
[fi(ξ)]

2 < ∞
}
.

(34)
This type of H is popular in machine learning, for example,
when the hypothesis class H is a well-designed reproducing
kernel Hilbert space.

d) The function class H is a Vapnik–Chervonenkis (VC) class;
that is, the VC index of H is finite.

Condition C6) holds if, for example, one of the following
is satisfied:
a) There exists a P0-square-integrable function m(ξ) such that

|h(x1, ξ)− h(x2, ξ)| ≤ m(ξ)∥x1 − x2∥, ∀x1,x2 ∈ X ,

is satisfied P0-almost surely.
b) Every element in H is a finite linear combination of

other P0-square-integrable functions; that is, (34). This
is because EP0

[
∑l

i=1(x̂n,i − x0,i)fi(ξ)]
2 ≤

∑l
i=1(x̂n,i −

x0,i)
2 ·

∑l
i=1 EP0

[fi(ξ)]
2 p−→ 0, as x̂n

p−→ x0.
Therefore, if we assume the pointwise m(ξ)−Lipschitz

continuity of the function h(x, ξ) where m(ξ) is P0-square-
integrable, then Conditions C3-C6 in Theorem 1 are simultane-
ously satisfied. In addition, if H takes the form as in (34), then

Conditions C3-C6 in Theorem 1 are simultaneously satisfied
as well. This two situations are sufficient for most of practical
machine learning hypothesis classes.

APPENDIX C
APPDICES OF SECTION VII

A. BDR Support Vector Machine
The BDR SVM classifier is derived in Appendix C-A1.

Additional experimental results of the BDR SVM on the
MNIST dataset are shown in Appendix C-A2. Experimental
tests of the BDR SVM on the UCI datasets [46], i.e., the
Ionosphere dataset, the Breast Cancer dataset, and the Adult
dataset are reported in Appendices C-A3, C-A4, and C-A5,
respectively. The tuning method of hyperparameters is the same
as that used on the MNIST dataset; see Subsection VII-A in
the main body of the paper. The average computational times
(averaged over 100 independent trials) for the experiments are
provided in Table V, which shows that BDR and DRO are
computationally comparable.

TABLE V
AVERAGED CPU TIMES (UNIT: SECONDS)

BDR DRO SAA
MNIST (4 vs 9) 68 66 7
Ionosphere 4.0 3.9 0.3
Breast Cancer 4.2 3.5 0.4
Adult (a1a) 4.0 3.8 0.3

1) BDR Formulation of SVM: The BDR formulation of
the SVM classification problem can be solved with a linear
program

min
x, λ, s

βnϵλ0 +
1

n

n∑
i=1

λi

s.t. 1− Yi · ⟨x, Ii⟩ ≤ λi, ∀i ∈ [n],
1 + Yi · ⟨x, Ii⟩ − κλ0 ≤ λi, ∀i ∈ [n],
0 ≤ λi, ∀i ∈ {0} ∪ [n],∑l

j=1 sj ≤ λ0,

xj ≤ sj ,−xj ≤ sj , 0 ≤ sj , ∀j ∈ [l],
x ∈ Rl, λ ∈ Rn+1, s ∈ Rl,

(35)
where n is the size of training samples and λ :=
(λ0, λ1, . . . , λn). The derivation process is trivial and therefore
omitted here. Just note that the dual norm of the ∞-norm
is the 1-norm, and in [2, Eq. (19)] we have C = 0 and
d = 0 (i.e., X := Rl). In this special case, BDR amounts to
DRO, where BDR just employs a βn-shrunken radius βnϵ for
the distributional uncertainty ball. However, this motivational
relation no longer holds for complicated learning tasks such
as BDR deep learning.

2) Additional Experiments on The MNIST Dataset: Experi-
mental results of the average out-of-sample accuracy on the
MNIST dataset for 3 vs 8 over 100 independent trials are
shown in Fig. 5, while for 1 vs 7 are in Fig. 6. From the two
figures, we can see that the conclusions are consistent with
those given in the main body of the paper (i.e., Subsection
VII-A): For example, BDR is more robust than DRO to the
choice of the radius ϵ of the distributional uncertainty ball.
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(b) Box plot of accuracy

Fig. 5. Average out-of-sample accuracy on the MNIST dataset for 3 vs 8
over 100 independent trials.
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(b) Box plot of accuracy

Fig. 6. Average out-of-sample accuracy on the MNIST dataset for 1 vs 7
over 100 independent trials.

3) Experiments on The UCI Ionosphere Dataset: The results
on the UCI Ionosphere dataset are shown in Fig. 7.
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(b) Box plot of accuracy

Fig. 7. Average out-of-sample accuracy on the UCI Ionosphere dataset over
100 independent trials.

4) Experiments on The UCI Breast Cancer Dataset: The
results on the UCI Breast Cancer dataset are shown in Fig. 8.
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Fig. 8. Average out-of-sample accuracy on the UCI Breast Cancer dataset
over 100 independent trials.

5) Experiments on The UCI Adult Dataset: The results on
the UCI Adult dataset are shown in Figs. 9-13.

B. Deep BDR Learning
1) Dataset Overview: We provide the numerical details of

the utilized datasets in Table VI.

(a) Mean accuracy against ϵ & κ (b) Box plot of accuracy

Fig. 9. Average out-of-sample accuracy on the UCI Adult dataset (a1a) over
100 independent trials.

(a) Mean accuracy against ϵ & κ (b) Box plot of accuracy

Fig. 10. Average out-of-sample accuracy on the UCI Adult dataset (a2a) over
100 independent trials.

(a) Mean accuracy against ϵ & κ (b) Box plot of accuracy

Fig. 11. Average out-of-sample accuracy on the UCI Adult dataset (a3a) over
100 independent trials.

(a) Mean accuracy against ϵ & κ (b) Box plot of accuracy

Fig. 12. Average out-of-sample accuracy on the UCI Adult dataset (a4a) over
100 independent trials.

(a) Mean accuracy against ϵ & κ (b) Box plot of accuracy

Fig. 13. Average out-of-sample accuracy on the UCI Adult dataset (a5a) over
100 independent trials.
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TABLE VI
SUMMARY OF DATASETS

Dataset Name Train Data Size Test Data Size Categories

MNIST 60,000 10,000 10
CIFAR-10 50,000 10,000 10
CIFAR-100 50,000 10,000 100
ModelNet40 9,843 2,468 40

2) Training Details: All experiments are executed using
Python 3.9, PyTorch 1.2, on a NVIDIA TITAN V GPU,
ensuring a stable computing environment for deep learning
tasks. We also note that in practice we implement the mini-
batch version of Algorithm 1 which is just similar to the
mini-batch SGD.

In 2D image classification, the WideResNet-28 model’s
training on CIFAR-10 and CIFAR-100 utilizes a batch size
of 128 across 200 epochs. The learning rate is initially 0.1,
adjusted down to 0.01 at epoch 100 and further to 0.001 at
epoch 150. We employ SGD with momentum for optimization,
setting weight decay at 0.0005. Furthermore, the training of
model on MNIST uses Adam optimizer with learning rate 0.001
without decaying. There is no extra data augmentation strategy
except for the DRO-based adversarial sample construction.

In 3D point cloud classification, we sample 1,024 points
of the 2048-point data as the input. PointNet training setup
includes a batch size of 32, up to 250 epochs, and an initial
learning rate of 0.001, adjusted by a decay mechanism. The
Adam optimizer is used for training. The learning rate’s decay
step is set to 200,000, with a decay rate of 0.7. On the
other hand, DGCNN training specifies a batch size of 32,
250 epochs, and a learning rate of 0.1 with SGD (momentum
0.9). It includes a cosine annealing for adaptive learning rate
adjustments. There is no extra data augmentation strategy
except for the DRO-based adversarial sample construction.

3) Adversarial Training Details: In our study, the PGD
attack [37] within a 2-norm ball is implemented to generate
adversarial samples based on DRO cost, of which the param-
eters are carefully chosen to ensure an effective yet subtle
modification of data.

In the image classification, the epsilon ϵ, defining the
maximum perturbation limit per pixel, is set to 0.03, to maintain
the visual similarity of the adversarial images to their originals.
The step size α, determining the granularity of each update
towards the adversarial direction, is chosen as 0.008. This
fine-grained approach allows for precise control over the
perturbation process. We iterate this process for 10 iterations
to achieve a balance between perturbation invisibility and the
success rate of the attack. In the point cloud classification, we
set ϵ to 0.05, α to 0.01, and the iteration number to 7.

4) Search Complexity Analysis: Here we provide the quanti-
tative analysis of the time complexity. Let tSAA, tDRO and tBDR
denote the training time per epoch for SAA, DRO and BDR
method; tBDR can be divided into two phases: β-searching
phase by cross-validation and BDR training phase, formally,

tBDR = tSearch + tTrain. (36)

For a selected β, we have tTrain = βtDRO +(1− β)tSAA due to
Algorithm 1. Suppose the set of candidate β is {β1, · · · , βk},
we implement the training on each βi as

tSearch = r

k∑
i=1

tTrain with βi = r

k∑
i=1

(βitDRO + (1− βi)tSAA)

(37)
where r ∈ (0, 1] is a factor standing for the effect of early stop
for cross-validation. Thus, the total time when β∗ is selected
as the optimal one is

tBDR = r
∑k

i=1 tTrain with βi + tTrain

= r
∑k

i=1(βitDRO + (1− βi)tSAA)+
β∗tDRO + (1− β∗)tSAA

(38)

if we consider the upper bound of total time when r = 1, we
have

tBDR ≤ (max
i

βi+

k∑
i=1

βi)tDRO+(k+1−
k∑

i=1

βi−min
i

βi)tSAA.

(39)
Considering the search set {0.5, 0.1, 0.05, 0.01}, we have

tBDR ≤ 1.16tDRO + 3.83tSAA = 1.6tDRO (40)

The upper bound of tBDR is 1.6tDRO when tDRO\tSAA = 9 in
practice. However, since the usage of early stop (i.e., r < 1)
and tTrain < maxi βitDRO + (1−mini βi)tSAA. In practice, we
always get tBDR ≈ tDRO, as shown in Table VII. Table VII
provides the time used per epoch for DRO, SAA, and BDR
learning for CIFAR-10 and 50% data experiment. Our searching
time is the equivalent time used per epoch for all β validation
training.

TABLE VII
AVERAGED TIME USED PER EPOCH FOR VARIOUS METHODS IN CIFAR-10

AND 50% DATA EXPERIMENT

Method Time (s)

DRO 888.0 ± 7.3
SAA 101.1 ± 1.5

BDR (β=0.01) 111.2 ± 5.6
BDR (β=0.05) 143.3 ± 12.5
BDR (β=0.1) 184.4 ± 16.5
BDR (β=0.5) 539.3 ± 29.3

BDR search time 694.0

As the estimated β∗ is 0.05, the total time of the BDR
method is 837.3s, which is less than the DRO method. The
rationale behind this is that DRO optimization often requires
significantly more time than SAA. Algorithm 1, by integrating
the two, effectively reduces the overall time required for DRO
optimization even though we have to conduct the searching by
cross-validation.
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Supplementary Materials

APPENDIX D
APPENDICES OF SECTION IV

A. Proof of Theorem 1
Proof. For every x ∈ X ′ such that the SAA and DRO
objectives are bounded in Pn

0 -probability, we have

vb,n(x)− vn(x) = βn maxP∈Bϵn (P̂n) EPh(x, ξ)+

(1− βn)EP̂nh(x, ξ)− EP̂nh(x, ξ)
p−→ 0,

because βn → 0. Hence, by Slutsky’s theorem, vb,n(x) shares
the same asymptotic properties with vn(x), for every x ∈ X ′.
As a result, Statement S1) and S4) are immediate due to the
conventional strong law of large numbers, i.e.,

vn(x) = EP̂nh(x, ξ)
a.s.−→ EP0h(x, ξ) = v(x), ∀x ∈ X ′,

and the conventional central limit theorem
√
n[EP̂nh(x, ξ)− EP0h(x, ξ)]

d−→ N(0,DP0h(x, ξ)), ∀x ∈ X ′,

respectively.
Suppose the DRO sub-problem is solved by P̄n such that

EP̄nh(x, ξ) = max
P∈Bϵn (P̂n)

EPh(x, ξ),

for x ∈ X ′. Note that this assumption is reasonable due to
Condition C1). We have

sup
x∈X ′

|vb,n(x)− v(x)|

= sup
x∈X ′

∣∣∣EβnP̄n+(1−βn)P̂nh(x, ξ)− EP0h(x, ξ)
∣∣∣

= sup
x∈X ′

∣∣∣βn

[
EP̄nh(x, ξ)− EP0h(x, ξ)

]
+

(1− βn)
[
EP̂nh(x, ξ)− EP0h(x, ξ)

]∣∣∣
≤ βn sup

x∈X ′

∣∣EP̄nh(x, ξ)− EP0h(x, ξ)
∣∣+

(1− βn) supx∈X ′

∣∣∣EP̂nh(x, ξ)− EP0h(x, ξ)
∣∣∣

p−→ 0.

The first term vanishes because βn approaches zero and
supx∈X ′

∣∣EP̄n
h(x, ξ)− EP0h(x, ξ)

∣∣ is finite on X ′, whereas
the second term decays because H is P0-Glivenko–Cantelli.
As a result, minx vb,n

p−→ minx v(x), as n → ∞, because

|vb,n(x̂b,n)− v(x0)| = | min
x∈X ′

vb,n(x)− min
x∈X ′

v(x)|

≤ sup
x∈X ′

|vb,n(x)− v(x)|
p−→ 0.

This is Statement S2).
For every x̂b,n ∈ X̂b,n, we have

|v(x̂b,n)− min
x∈X ′

v(x)|

≤ |v(x̂b,n)− vb,n(x̂b,n)|+ |vb,n(x̂b,n)− min
x∈X ′

v(x)|

≤ sup
x∈X ′

|vb,n(x)− v(x)|+ |vb,n(x̂b,n)− min
x∈X ′

v(x)|
p−→ 0.

Therefore, due to Condition C4), there exists x0 ∈ X0 such
that x̂b,n

p−→ x0, which proves Statement S3). (One may use
a contradiction, by assuming that the limit point of x̂b,n is not
in X0, to verify this claim.)

By Conditions C5) and C6), we have Gnh(x̂n, ξ)
d−→

GP0
h(x0, ξ) ∼ N(0,DP0

h(x0, ξ)); see [26, Lemma 19.24].
On the one hand, we have

√
n[vb,n(x̂b,n)− v(x0)]
= E√

n[βnP̄n+(1−βn)P̂n]h(x̂b,n, ξ)− E√
nP0h(x0, ξ)

≤ E√
n[βnP̄n+(1−βn)P̂n]h(x0, ξ)− E√

nP0h(x0, ξ)

=
√
n[EP̂nh(x0, ξ)− EP0h(x0, ξ)] + op(1)

d−→ GP0h(x0, ξ),

where the second equality is because
√
nβn → 0 and op(1) in

the second equality denotes the “small-Oh” notation (i.e., an =
op(1) implies that the sequence {an} converges in probability
to zero as n → ∞), and the convergence in distribution is
due to the fact that h(x0, ·) is in H and H is P0-Donsker. By
Slutsky’s theorem, it implies that

E√
n[βnP̄n+(1−βn)P̂n]

h(x0, ξ)− E√
nP0

h(x0, ξ)
d−→ GP0

h(x0, ξ).

On the other hand, we have
√
n[vb,n(x̂b,n)− v(x0)]
= E√

n[βnP̄n+(1−βn)P̂n]h(x̂b,n, ξ)− E√
nP0h(x0, ξ)

≥ E√
n[βnP̄n+(1−βn)P̂n]h(x̂b,n, ξ)− E√

nP0h(x̂b,n, ξ)

=
√
n[EP̂nh(x̂b,n, ξ)− EP0h(x̂b,n, ξ)] + op(1)

d−→ GP0h(x̂b,n, ξ)
= GP0h(x0, ξ) + op(1),

where the second equality is because
√
nβn → 0, the

convergence in distribution is due to the fact that h(x̂b,n, ·) is
in H and H is P0-Donsker, and the third equality is because
the function GP0

h(·, ξ) is (uniformly) continuous10 so that the
continuous mapping theorem applies. By Slutsky’s theorem, it
implies that

E√
n[βnP̄n+(1−βn)P̂n]h(x̂b,n, ξ)− E√

nP0h(x̂b,n, ξ)
d−→ GP0h(x0, ξ).

Therefore, by the squeeze theorem, we have
√
n[vb,n(x̂b,n)− v(x0)]

d−→ GP0h(x0, ξ) ∼ N(0,DP0h(x0, ξ)),

because the cumulative distribution function of
N(0,DP0h(x0, ξ)) is continuous everywhere on R. This
completes the proof.

B. Asymptotic Normality of the Optimal Solution

The asymptotic normality of the optimal solution is estab-
lished below.

Proposition 1 (Asymptotic Normality of Optimal Solution).
For every x̂b,n ∈ X̂b,n and every x0 ∈ X0, if Conditions
C1) and C2) in Theorem 1 hold, x̂b,n

p−→ x0, the Jacobian
∇xh(x0, ξ) exists and is P0-square-integrable such that

|h(x1, ξ)−h(x2, ξ)| ≤ ∇xh(x0, ξ)∥x1−x2∥, ∀x1,x2 ∈ X ,

and the Hessian ∇2
xh(x0, ξ) exists and is nonsingular and

P0-integrable, then we have
√
n(x̂b,n − x0)

d−→ N(0,Vx0
)

as n → ∞, where

Vx0
:= [EP0∇2

xh(x0, ξ)]
−1·

EP0 [∇xh(x0, ξ)∇⊤
xh(x0, ξ)] · [EP0∇2

xh(x0, ξ)]
−⊤.

□

10Almost all sample paths f 7→ GP0 (f),∀f ∈ F of the P0-Brownian
bridge process GP0 are uniformly continuous on the semi-metric space (F , d)
where d is a semi-metric on F ; see [26, Lemma 18.15].
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Proof. The proof is routine in light of proofs of [26, Thm. 5.23]
and Theorem 1, and thus, omitted. Just note that a P0-square-
integrable function is bounded in P0-probability.

C. Proof of Theorem 2
Proof. For every given x, if vn(x) ≥ v(x), the first in-
equality holds for all βn,x ∈ [0, 1] because vr,n(x) ≥ v(x)
and vr,n(x) ≥ vn(x); note that βn,x depends on x; if
vn(x) < v(x), the first inequality holds for some βn,x ∈ [0, 1].
Therefore, for every x, there exists βn,x ∈ [0, 1] such that the
inequality

v(x) ≤ βn,xvr,n(x) + (1− βn,x)vn(x)

holds x-point-wisely. Let β∗
n,x denote the smallest value of

βn,x that satisfies the above display. Because vn(x) ≤ vr,n(x),
by letting βn ≥ β∗

n := maxx β∗
n,x, the inequality

v(x) ≤ βnvr,n(x) + (1− βn)vn(x)

holds uniformly for all x; note that

β∗
n,xvr,n(x) + (1− β∗

n,x)vn(x) ≤ βnvr,n(x) + (1− βn)vn(x).

Since
β∗
n,x =

v(x)− vn(x)

vr,n(x)− vn(x)
, ∀x,

β∗
n equals the largest value of the right-hand side of the above

display. This completes the proof.

D. Proof of Theorem 3

Proof. For the DRO problem, if P0 ∈ Bϵn(P̂n), as is the case
in (21), we have

minx EP0h(x, ξ) ≤ EP0h(x̂r,n, ξ)
≤ maxP∈Bϵn (P̂n) EPh(x̂r,n, ξ)

= minx maxP∈Bϵn (P̂n) EPh(x, ξ).

The above display implies that minx EP0
h(x, ξ) ≤

EPn
0

[
minx maxP∈Bϵn (P̂n)

EPh(x, ξ)
]
. Therefore, the DRO

model minx maxP∈Bϵn (P̂n)
EPh(x, ξ) is always a positively

biased estimator of minx EP0
h(x, ξ), for every n such that

P0 ∈ Bϵn(P̂n). On the other hand, EPn
0

[
minx EP̂n

h(x, ξ)
]
≤

minx EP0h(x, ξ), that is, the SAA model minx EP̂n
h(x, ξ) is

always a negatively biased estimator of minx EP0
h(x, ξ), for

every n.
As for the BDR model, we have

min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]
≤ βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

≤ βn max
P∈Bϵn (P̂n)

EPh(x, ξ) + (1− βn) max
P∈Bϵn (P̂n)

EPh(x, ξ)

= max
P∈Bϵn (P̂n)

EPh(x, ξ),

and therefore,

min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]
≤ min

x
max

P∈Bϵn (P̂n)
EPh(x, ξ).

The above implies that, for every n, the BDR model gives a
smaller estimate than the DRO model. (Since the DRO model
is always positively biased, this is a desired property of the
BDR model.) Furthermore, this means that

EPn0

[
min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]]

≤ EPn0

[
min
x

max
P∈Bϵn (P̂n)

EPh(x, ξ)

]
,

that is, the BDR model tends to have a smaller bias than the
DRO model. In addition,

min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]
≥ min

x

[
βnEP̂nh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]
= min

x
EP̂nh(x, ξ).

Hence, for every n, the BDR model gives a larger estimate than
the SAA model. (Since the SAA model is always negatively
biased, this is also a desired property of the BDR model.)
Furthermore, this means that

EPn0

[
min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]]
≥ EPn0

[
min
x

EP̂nh(x, ξ)
]
,

that is, the BDR model tends to have a smaller bias than the
SAA model.

Since for every x,

EPn0

[
minx EP̂nh(x, ξ)

]
≤ minx EP0h(x, ξ)

≤ EPn0

[
minx maxP∈Bϵn (P̂n) EPh(x, ξ)

]
,

there exists βn ∈ [0, 1] such that

min
x

EP0h(x, ξ) = βn · EPn0

[
min
x

max
P∈Bϵn (P̂n)

EPh(x, ξ)
]
+

(1− βn) · EPn0

[
min
x

EP̂nh(x, ξ)
]

≤ EPn0

[
min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ)+

(1− βn)EP̂nh(x, ξ)
]]

.

On the other hand, we have

EPn0

[
min
x

[
0 · max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− 0) · EP̂nh(x, ξ)

]]
= EPn0

[
minx EP̂nh(x, ξ)

]
≤ min

x
EP0h(x, ξ).

Therefore, there exists βn ∈ [0, βn] such that
min
x

EP0h(x, ξ) =

EPn0

[
min
x

[
βn max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− βn)EP̂nh(x, ξ)

]]
,

that is, the BDR model is an unbiased estimator of
minx EP0

h(x, ξ), because the function

β 7→ EPn0

[
min
x

[
β · max

P∈Bϵn (P̂n)
EPh(x, ξ) + (1− β) · EP̂nh(x, ξ)

]]
is increasing and continuous in β ∈ [0, 1].

APPENDIX E
APPENDICES OF SECTION V: PROOF OF THEOREM 5

Before we provide the formal proof of Theorem 5 in Ap-
pendix E-C, we prepare with preliminary results in Appendices
E-A∼E-B. The key is to reformulate the infinite-dimensional
DRO sub-problem into a finite-dimensional optimization.
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A. Monte–Carlo Approximation

In the literature, the DRO problem

min
x∈X

max
P

EPh(x, ξ)

s.t. ∆(P, P̄) ≤ ϵ
(41)

can be reformulated to a non-linear finite-dimensional opti-
mization. For details, see Appendix A-C.

In this subsection, we propose to use a novel Monte–Carlo-
based method to solve (41). Suppose P ≈

∑m
j=1 µjδζj , where

{ζj}j∈[m] are samples from P, δζj is the Dirac measure at
ζj , and the weights {µj}j∈[m] can be determined by, e.g.,
importance sampling through using an appropriate proposal
distribution (e.g., uniform distribution).11 Likewise, we suppose
that the set of observations {ξi}i∈[n] are sampled from P̄ and
their weights are {µ̄i}i∈[n] and therefore P̄ ≈

∑n
i=1 µ̄iδξi .

As a result, all integrals in (41), i.e., EPh(x, ξ) and those
involved in ∆ if any,12 can be approximated by weighted
sums; the approximations are exact in the weak convergence
sense (i.e., sums converge to integrals) if min{n,m} → ∞
due to the law of large numbers. In practice, we may choose
large enough values for n and m, which however depends on
specific problems. As a result, (41) transforms to

min
x

max
{µj ,ζj}j∈[m]

∑m
j=1 µjh(x, ζj)

s.t. ∆(P, P̄) ≤ ϵ.
(42)

When ∆ is the Wasserstein distance, (42) transforms to

min
x

max
P ,µ,{ζj}

∑m
j=1 µjh(x, ζj)

s.t.
∑n

i=1

∑m
j=1 d

p(ξi, ζj) · Pij ≤ ϵp∑n
i=1 Pij = µj , ∀j ∈ [m]∑m
j=1 Pij = µ̄i, ∀i ∈ [n]

Pij ≥ 0, ∀i ∈ [n],∀j ∈ [m],

(43)

where P := {Pij},∀i ∈ [n],∀j ∈ [m] can be seen as a joint
distribution whose marginals are µ and µ̄, respectively. By
eliminating µ, (43) is equivalent to

min
x

max
P ,{ζj}

∑m
j=1

∑n
i=1 h(x, ζj) · Pij

s.t.
∑m

j=1

∑n
i=1 d

p(ξi, ζj) · Pij ≤ ϵp∑m
j=1 Pij = µ̄i, ∀i ∈ [n]

Pij ≥ 0, ∀i ∈ [n], ∀j ∈ [m].
(44)

The worst-case distribution solving (44) is given below.

Theorem 6. For every given x, the worst-case distribution P∗

solving (44) is supported on at most n+ 1 points in Ξ, that
is, there exist {µj , ζj}j∈[n+1] such that P∗ =

∑n+1
j=1 µjδζj .

Moreover, the discrete worst-case distribution P∗ has the
following structure

P∗ = µ̄i0 · [qδξi0,1
+ (1− q)δξi0,2

] +
n∑

j=1,j ̸=i0

µ̄jδζj , (45)

for one i0 ∈ [n], where 0 ≤ q ≤ 1 and {ζj}j∈[n+1] =
{ξi0,1}

⋃
{ξi0,2}

⋃
{ξi}i∈[n]−i0 . To be specific, at most one

weight µ̄i0 of P̄ is split into two weights of P∗ (N.B.: q is
the splitting weight), and the other n − 1 weights of P̄ (i.e.,
{µ̄i}i∈[n]−i0 ) are directly inherited by P∗.

11C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, pp. 532. Springer, 2006.

12Recall the case where ∆ is the Wasserstein distance defined in (20).

Proof. See Appendix E-B.

Theorem 6 implies that although P∗ and P̄ have slightly
different support sets, P∗ is almost determined by the discrete
reference distribution P̄.

Data-Driven Case: If P̄ := P̂n = 1
n

∑n
i=1 δξi and µ̄j =

1/n,∀j ∈ [n], (44) gives

min
x

max
P ,{ζj}

m∑
j=1

n∑
i=1

h(x, ζj) · Pij

s.t.
∑m

j=1

∑n
i=1 d

p(ξi, ζj) · Pij ≤ ϵp∑m
j=1 Pij = 1

n
, ∀i ∈ [n]

Pij ≥ 0, ∀i ∈ [n],∀j ∈ [m].

(46)

According to Theorem 6, when conducting the optimization
(46), it is safe to let m := n+1. Note that the solution method
(46) includes several existing duality-based methods as special
cases, e.g., Corollary 3.3.1 in [29], Section 2.2 in [1].

B. Proof of Theorem 6

Proof. In (44), we have n+1 constraints, and therefore, at most
n+ 1 components in P is non-zero. This further implies that,
given m ≥ n+1, at most n+1 components of µ can be non-
zero. In other words, the worst-case distribution solving (44)
is supported on at most n+1 points for every m ≥ n+1. The
structure of P∗ is straightforward to be verified by contradiction:
If there exist two weights of P̄ to be split, then P∗ needs to
be supported on at least n+ 2 points, which contradicts the
fact that P∗ is supported on at most n+ 1 points.

C. Proof of Theorem 5

Proof. For every x, suppose h(x, ξ) is continuous in ξ on Ξ.
Then, for every {µj}j∈[m] and {ζj}j∈[m], there exists µ′

j =
1/m,∀j ∈ [m] and {ξ′j}j∈[m] such that

m∑
j=1

µjh(x, ζj) =

m∑
j=1

1

m
h(x, ξ′j). (47)

This is due to the intermediate value theorem of a continuous
function. Hence, using the representation (47) of the weighted
sum in the objective of (43), according to Theorem 6, we must
have m = n and µi = µ̄i = 1/n, for every i ∈ [n]. As a result,
(46) reduces to (16). Note that in the interior of Ξ, concavity
implies continuity. This completes the proof.

Remark 5. The proof process above recovers a well-known
reformulation for (46) in [29, Cor. 3.3.1], which requires the
concavity of h(x, ·), for every x. However, we can relax the
concavity to the continuity. □
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